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Abstract
The direct band gap of the conjugated polymer poly(p-phenylenevinylene)
(PPV) is calculated in an effective single-band model by means of a renormal-
ization scheme. This model provides a simple computational method for
obtaining the band gap of a many-band conjugated π -electron system of long
polymers. The calculation shows that, for the existing data for PPV, the present
renormalization scheme works well and its results as regards the band energy
gap are comparable to those obtained by other approaches including ab initio
calculation.

1. Introduction

The successful demonstration of a PPV-based light-emitting diode [1, 2] has created a great
deal of interest in studying the luminescence mechanism of this material, and its derivatives
of various kinds, both theoretically and experimentally. Such luminescence in PPV materials
mainly arises from recombination of a Bu-state electron–hole pair in the excitonic spectra. In
determining the excitonic spectra for quasi-one-dimensional π -conjugated polymer systems
such as PPV, it is important to know the band energy gap or the threshold state nBu of the
continuous spectra of the conduction band, but these become difficult to determine when an
electron is excited from the conduction band to the valence band due to the multi-π -band
character of PPV. This difficulty is caused by the combined effects of the electron–lattice
interaction, the lattice relaxation, the polarizing effects, and the electronic correlation effects.
The difficulty in determining the band energy gap or nBu then causes the exact positions of
excitons in the spectra [3] to be ambiguous. According to the Coulomb model of the exciton
[4], the threshold state nBu is consistent with the Hartree–Fock (HF) band energy gap [3, 4].
Thus, the correct determination of the band energy gap for materials such as PPV becomes
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an important task in determining the excitonic positions and the exciton binding energy. At
present, the band energy gap for PPV can be calculated using the GW -approximation in an
ab initio approach [5], which includes the electron exchange and the correlation effects while
overcoming the shortcomings of empirical methods. However, using ab initio calculations can
impose a heavy computational burden when looking at a many-band system with large unit
cells. Therefore, in this paper we propose a simple approach for arriving at a reasonable value
of the band energy gap for PPV.

It is known that among theπ -conjugated polymers, polyene (PE) is the simplest polymer—
just a chain of alternating single and double bonds—and polyacetylene (PA) is, except that it has
two different configurations—the trans-configuration and the cis-configuration—also simple,
being composed of alternating single and double bonds. They are both single-π -band systems
and each has two sites in its unit cell. Thus, they have been widely and successfully described
using the Su–Schrieffer–Heeger (SSH) Hamiltonian or an extended SSH Hamiltonian [6]. The
PPV polymer, however, is more complex, being composed of alternating phenylene units and
vinylene units. In every phenylene unit, there are two single bonds and a benzene ring. The
multi-band electronic structure character of PPV results from the benzene rings. There are
four main energy bands in each of the valence and conduction bands [7, 8]. The existing
method which works for PE or PA cannot be directly applied to the PPV polymer due to this
multi-band nature. For PPV polymers some previous authors have used an effective hopping
parameter, considering a larger phenylene unit to describe the system. But this parameter was
adjusted empirically [9] and was not connected with the basic electronic structure related to
the optical absorption, which can be directly measured in experiments.

In PPV polymer and its derivatives, the fundamental optical absorption is mainly due to
the transition from the top level of the four valence bands (the HOMO: highest occupied mol-
ecular orbital) to the bottom level of the four conduction bands (the LUMO: lowest unoccupied
molecular orbital). The band energy gap is just determined by these two levels. Other branch
bands are not so important in the optical excitation, and thus can be neglected in determining
the band energy gap. We consider this basic fact enlightening; it gave us the central idea
of setting up a simple approach. We may regard those two levels between which the main
optical transition occurs as arising from an equivalent system which has single-band character.
To complete this idea, the renormalization approach is the best candidate. Therefore, in the
present paper a partial renormalization technique [10] is applied to the phenylene units to
simplify the description of the PPV polymer to an effective ‘dimerized’ one, while keeping
unchanged the electronic structure that the system possesses. Thus, an effective ‘dimerized’
PPV chain with an effective hopping parameter, tre, and an effective interaction, 
treee , cor-
responding to the effective single bond plus the Hartree–Fock correction is proposed in terms
of the original parameters.

The organization of the paper is as follows.
In section 2.1, our model is described. In section 2.2, a simple description of the re-

normalization procedure is given and the expressions for the effective hopping tre and the
effective site energy ε̄ are given. In section 2.3, a discussion of electron–electron interactions
in the Hartree–Fock approximation for PPV and the effective electron–electron interaction
correction, 
treee , are given, and an effective single-band model Hamiltonian is formulated.

In section 3, we show how to obtain the desired effective hopping parameter tre and discuss
its relation to the band energy gap and also the lowest unoccupied molecular orbital and the
highest occupied molecular orbital. The numerical results are also given.

In section 4, we discuss our results, the validity of the present renormalization scheme,
and the model Hamiltonian.

The final section gives our conclusions.
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2. Model

2.1. Model Hamiltonian

We start from the following Hamiltonian for describing PPV: a sum of the single-electron term
H0 plus the electron–electron interaction term He−e:

H = H0 + He−e. (1)

Here

H0 = Hd + Hb (2)

where Hd refers to the vinylene double bonds and Hb to the phenylene units:

Hd = −
∑
m,σ

tv(C
†
2m,σC2m+1,σ + C

†
2m+1,σC2m,σ ) (3)

Hb =
∑
m,σ

ε2m−1n2m−1,σ +
∑
m,sσ

εb
s n2m−1,s,σ +

∑
m,σ

ε2mn2m,σ

−
∑
m,σ

ts(C
†
2m−1,σC2m−1,1,σ + C

†
2m−1,1,σC2m−1,σ )

−
s �=s ′∑

m,s,s ′σ

tss ′(C
†
2m−1,s,σC2m−1,s ′,σ + C

†
2m−1,s ′,σC2m−1,s,σ )

−
∑
m,σ

ts(C
†
2m−1,4,σC2m,σ + C

†
2m,σC2m−1,4,σ ) (4)

and He−e is the electron–electron interaction term:

He−e =
∑
i

Uρi↑ρi↓ +
1

2

i �=j∑
ij

Vij (ni − 1)(nj − 1). (5)

Here C
†
iσ (Ciσ ) are π -electron creation (annihilation) operators with spin σ at the site i,

ni = ∑
σ niσ , niσ = C

†
iσCiσ , ρiσ = niσ − 1/2;

∑s �=s ′
s,s ′ runs over nearest-neighbour-site

pairs on the benzene rings; ε2m (ε2m−1) is the site energy of a π -electron at a carbon-atom site
of the vinylene unit and is identified with the parameter α in Hückel theory, and εb

2m−1,s is the
site energy on the benzene ring. The tss ′ (s �= s ′) are hopping integrals of π -electrons on the
benzene ring. Here we only consider nearest-neighbour hopping between the carbon atoms.
Then tb denotes the nearest-neighbour hopping integral for the carbon atoms in the benzene
ring, ts denotes the hopping integral for π -electrons hopping between the benzene ring and the
vinylene unit, and tv the hopping integral on the vinylene double bond. The hopping integral
is the resonance integral β in Hückel theory. Figure 1(a) illustrates the PPV geometry and the
subscript notation. The hydrogen atom attached to every C atom has not been drawn in, and
their effects on the system are assumed to be absorbed in the original parameters. In He−e, U is
the on-site Coulomb interaction for the carbon atoms, and the long-range Coulomb interaction,
Vij , is given by the parametrized Ohno potential [11]:

Vij = U

κ
√

1 + 0.6117r2
ij

(6)

where rij is the inter-atomic distance in Å. κ is the screening arising from the other surrounding
chains and the polarization effects.
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Figure 1. (a) PPV geometry; (b) reduced PPV.

The above electronic Hamiltonian (1) for PPV includes almost all information relevant
to the optical excitation process. However, it is not possible to completely solve this many-
body problem in an analytical manner like in solving for PE and PA. Thus we need a method
for simplifying the structure of PPV but keeping its main electronic character unchanged, as
mentioned in the introduction.

2.2. Structure renormalization of phenylene units

Each phenylene unit includes a benzene ring and two single bonds. An isolated benzene ring
has six C-atom sites on which there are six localized π -electrons which themselves produce
six energy states distributed symmetrically about zero energy: b2g(α + 2β), e2u(α +β) (doubly
degenerate), e1g(α − β) (doubly degenerate), and a2u(α − 2β) [12], where α and β are Hückel
parameters and are negative. Three of them are lower states and the other three are higher
states. Thus, an isolated benzene ring supports four energy values. If each benzene ring can
be viewed as an effective molecular ‘site’, then that site must allow the four orbitals in which
the difference between the LUMO (α − β) and the HOMO (α + β) is just 2β.

It is known that in a π -conjugated system composed of many such benzene rings, like
poly( para-phenylene) (PPP), the difference between the LUMO and the HOMO will be smaller
than 2β and will decrease with increasing length and reach a converged value when the chain
is rather long [13]. (The convergence occurs before the chain becomes infinite.) A similar
process also occurs in PPV, where each PPV unit has eight carbon atoms.

In the energy band of PPV, the highest bonding energy band, denoted by π , and the lowest
antibonding energy band, denoted by π∗, determine the band energy gap. The localized π -
electrons on the benzene rings contribute energy bands that are lower (higher) than the highest
bonding (lowest antibonding) energy bands. The π–π∗ energy bands are thus due mainly to
the delocalized π -electrons on the vinylene double bonds. As stated in the introduction, the
aim of the renormalization is to model the π–π∗ energy bands from the multi-band set of PPV.

In PPV, the benzene rings have relatively stable bond structure as compared to the vinylene
units. The bond-length change mainly occurs on the vinylene double bond [8]. Thus, we may
separate the phenylene unit from the PPV chain. This unit has the Hamiltonian Hb in (4).
According to a renormalization study of the benzene ring [14], the phenylene unit can be
reduced to two effective ‘sites’ and an effective hopping between these two ‘sites’ by means
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of the following sets of equations:

tre = t2
s τ

(E − ᾱ)(E − β̄) − τ 2
(7a)

ε̄2m−1 = ε2m−1 +
t2
s

E − ᾱ − (τ 2/[E − β̄])
(7b)

ε̄2m = ε2m +
t2
s

E − β̄ − (τ 2/[E − ᾱ])
(7c)

and

ᾱ = εb
2m−1,1 +

2t2
b

E − εb
2m−1,2

+
2(t2

b /[E − εb
2m−1,2])2

E − εb
2m−1,3 − (t2

b /[E − εb
2m−1,2])

(8a)

β̄ = εb
2m−1,4 +

2t2
b

E − εb
2m−1,3

+
2(t2

b /[E − εb
2m−1,3])2

E − εb
2m−1,2 − (t2

b /[E − εb
2m−1,3])

(8b)

τ = 2t3
b

(E − εb
2m−1,2)(E − εb

2m−1,3) − t2
b

(8c)

where E is the energy of the system. In this way, Hb can be reduced to

H̃b =
∑
m,σ

ε̄2m−1n2m−1,σ +
∑
m,σ

ε̄2mn2m,σ −
∑
m,σ

tre(C
†
2m−1,σC2m,σ + C

†
2m,σC2m−1,σ ) (9)

where tre, ε̄2m−1, and ε̄2m are the effective hopping parameter and the effective ‘site’ energies.
Suppose tv , the hopping integral on the vinylene double bond, is not changed when the
phenylene unit is renormalized [15] (in fact it may be affected by the renormalization process
but we ignore such change); we then arrive at an effective Hamiltonian

H̃0 = Hd + H̃b. (10a)

That is,

H̃0 =
∑
m,σ

ε̄2m−1n2m−1,σ +
∑
m,σ

ε̄2mn2m,σ −
∑
m,σ

tv(C
†
2m,σC2m+1,σ + C

†
2m+1,σC2m,σ )

−
∑
m,σ

tre(C
†
2m−1,σC2m,σ + C

†
2m,σC2m−1,σ ). (10b)

H̃0 looks like the single-band SSH Hamiltonian for polyacetylene and thus can be easily
diagonalized.

For simplicity, we assume that all C atoms have identical site energies, denoted by a.
Then, the renormalized site energies at all m sites, ε̄2m−1 and ε̄2m, become ε̄. Therefore

ε̄ = t2
s ω(ω2 − 3t2

b )

[ω(ω + tb) − 2t2
b ][ω(ω − tb) − 2t2

b ]
(11)

tre = 2t2
s t

3
b

[ω(ω + tb) − 2t2
b ][ω(ω − tb) − 2t2

b ]
(12)

which comes from (7b), (7c), and (7a). Here ω = E − a. Figure 1(b) shows the geometrical
structure of the PPV chain after renormalization.

In the following calculations, it was found that the role of the site energies a is just
to shift all energy values by the amount a, and that they do not affect the values of the
resulting tre and ε̄. We do not study impurities or disorder here. So the original site energies,
εb

2m−1,1, . . . , ε
b
2m−1,6, ε2m−1, and ε2m (all assumed to have the same value, denoted as a) may

be set to zero in this investigation.
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2.3. Contributions from electron–electron interactions

The single-electron spectrum of (2) will be changed by the π -electronic interactions, He−e, and
by interparticle correlations, which are important factors in the optical excitation and optical
non-linearity. Most authors use the PPP model to describe the Hamiltonian of π -conjugated
polymers, in which the π -electron interaction term is parametrized by an Ohno potential, and
decoupled by the HF approximation [3, 7, 8]. In this study, we are concerned with the band
energy gap instead of the polaron effect and the related polarization effects. We will also treat
the system as a rigid lattice [3, 9] and assume that lattice vibrations of the system will not
affect the band gap to a large extent. Then, the HF approximation will be applied to decouple
the interaction term He−e [3, 7, 8].

PPV is centrosymmetric and thus has C2 symmetry. Some π -electronic interaction terms
from the parametrized Ohno potential, Vij (see (6)), counteract each other. For example,
the π -electrons on sites 2m and 2m + 1 of the vinylene unit in a PPV unit will experience
repulsive Coulomb interactions: V2m−2,2m and V2m,2m+2 or V2m−1,2m+1 and V2m+1,2m+3 from
the nearby PPV units (one on its left and another on its right) with identical magnitudes
(V2m−2,2m = V2m,2m+2 and V2m−1,2m+1 = V2m+1,2m+3) but opposite directions. As for other
non-nearest-neighbour π -electron interactions, the same consideration applies. Therefore
these π -electron repulsive interactions need not be considered in the calculations. However,
the π -electron interaction V2m−1,2m (crossing a benzene ring) in the PPV unit cell is unique and
is not counteracted by any other interaction terms. Also, other non-nearest-neighbour non-
symmetrical interactions are not counteracted. For instance, the π -electrons on a vinylene unit
experience the Coulomb forces from the benzene rings on their left and their right, which are
not counteracted. Nevertheless, they contribute a negligible amount, because the non-nearest-
neighbour bond-charge densities are so small when compared to the nearest-neighbour ones.
Thus, we only consider the nearest-neighbour π -electronic interactions for the carbon atoms
in this study.

It is assumed that the mean value of the π -electron density operator, 〈niσ 〉, shows no
fluctuation and is exactly 1/2, which is equivalent to working in the bond-order-wave (BOW)
phase. Because there is no magnetic effect, 〈niσ 〉 = 〈niσ̄ 〉. Under this assumption, the
terms containing U in He−e vanish and the long-range Coulomb-interaction terms, Vij , do not
contribute to the site energies in the HF approximation. If we do not make the assumption
that 〈niσ 〉 is 1/2, the site energies will have additional terms containing factors like U〈niσ 〉 or
Vij 〈niσ 〉 which only shift the zero of energy. Then He−e becomes [16]

HHF
e−e = −

∑
m,σ

Vs[(C
†
2m−1,σC2m−1,1,σ + C

†
2m−1,1,σC2m−1,σ )
s − (
s)

2]

−
∑
m,σ

∑
s,s ′

′
Vb[(C†

2m−1,s,σC2m−1,s ′,σ + C
†
2m−1,s ′,σC2m−1,s,σ )
b − (
b)

2]

−
∑
m,σ

Vs[(C
†
2m−1,4,σC2m,σ + C

†
2m,σC2m−1,4,σ )
s − (
s)

2]

−
∑
m,σ

V0[(C†
2m,σC2m+1,σ + C

†
2m+1,σC2m,σ )
0 − (
0)

2] + HHF
v−units + HHF

p−units

= HHF
p−nn + HHF

p−nnn + HHF
v−nn + HHF

v−nnn (13)

where 
s ≡ 〈C†
2m−1,1,σC2m−1,σ 〉 = 〈C†

2m−1,4,σC2m,σ 〉, 
b ≡ 〈C†
2m−1,s ′,σC2m−1,s,σ 〉, and


0 ≡ 〈C†
2m+1,σC2m,σ 〉. 〈· · ·〉 means the ground-state expectation value;

∑′
s,s ′ means the

sum over the nearest-neighbour sites on the benzene rings. Here, 
s , 
b, and 
0 are the
bond-charge densities on the single bond between the benzene ring and the vinylene bond,
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the benzene ring bonds, and the vinylene double bond, respectively (see the appendix for
expressions for them). Because 
s , 
b, and 
0 are all constant, their square terms in HHF

e−e

may be omitted in the calculation.
Due to the absence of the on-site Coulomb interaction U in HHF

e−e , the electron correlation
effect arising from U has in fact been removed from the system. However, this does not
mean that there is no correlation between the π -electrons, because the long-range Coulomb
interaction Vij is still operative in HHF

e−e . In the HF approximation the part of the correlation
effects arising from the electrons with the same spin is included. As a first-order approximation,
the residual interaction Hres = He−e − HHF

e−e will also be omitted because, as a perturbation,
it contributes only to a small degree [17].

Although the on-site Coulomb interactions U are not included in the resulting Hamil-
tonian, HHF

e−e , in the HF approximation in the BOW phase, its role is partly taken, through
the Ohno formula, by (6). The role of U is to affect the electrons’ localizability. Thus, as U

increases, the localization of the π -electrons will increase, and hence the overlap between two
adjacent atomic orbitals decreases and the corresponding bond-charge density also decreases.

In the tight-binding approximation that the SSH Hamiltonian was based on, the nearest-
neighbour bond-charge densities, 〈C†

i Ci±1〉, are the main contributions, and other non-nearest-
neighbour bond-charge densities like 〈C†

i Ci±2〉 and 〈C†
i Ci±3〉 are negligible. The non-nearest-

neighbouring interaction terms relating to the phenylene units, HHF
p−nnn, and the non-nearest-

neighbouring interaction terms relating to the vinylene units, HHF
v−nnn, may be omitted. This

is why we only consider the nearest-neighbour interactions. We may renormalize HHF
p−nn to

− ∑
m,σ 
treee (C

†
2m−1,σC2m,σ + C

†
2m,σC2m−1,σ ). Then we have

H̃HF
re = −

∑
m,σ


treee (C
†
2m−1,σC2m,σ + C

†
2m,σC2m−1,σ )

−
∑
m,σ


t0
ee(C

†
2m,σC2m+1,σ + C

†
2m+1,σC2m,σ ). (14)

Here 
t0
ee = V0
0 is the HF correction of the electron–electron interactions with respect to

the vinylene double bond, and 
treee is the correction of the electron–electron interactions with
respect to the phenylene unit which is determined by


treee = 2(Vs
s)
2(Vb
b)

3

|[E(E + Vb
b) − 2(Vb
b)2][E(E − Vb
b) − 2(Vb
b)2]| . (15)

Finally, by adding (10b) and (14) together, we obtain a renormalized effective single-band
Hamiltonian for PPV:

H̃eff =
∑
m,σ

ε̄(n2m−1,σ + n2m,σ ) −
∑
m,σ

t ′0(C
†
2m,σC2m+1,σ + C

†
2m+1,σC2m,σ )

−
∑
m,σ

t ′re(C
†
2m−1,σC2m,σ + C

†
2m,σC2m−1,σ ). (16)

Here t ′0 and t ′re are given by

t ′0 = tv + 
t0
ee (17)

t ′re = tre + 
treee . (18)

In the momentum space, H̃eff is easily diagonalized as

Eeff =
∑
k

(εkcnkc − εkvnkv ) (19)

where εkc = |z̄kc | + ε and εkv = −(|z̄kv | − ε). Here,

|z̄k| =
√
(t ′0 + t ′re)2 − 4(t ′0t ′re) sin2(kd/2)
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and εkc and εkv are the conduction band and the valence band energy spectra. Due to the
renormalization, the conduction band and the valence band are not symmetric with respect to
the zero energy level. The band energy gap, denoted by EHF

gap , is given by 2|z̄kF | = 2(t ′0 − t ′re)
at kF = π/d; that is,

EHF
gap = E0

gap + 
Egap (20)

where 
Egap is the correction of the electron–electron interaction to the energy band gap.
Because the original PPV system has been transformed to an equivalent single and double
model like that of PA, the band gap is opened as for PA at the k-point kF = π/d of the
reduced Brillouin zone [3]. Here the definition of d is as follows. We take the direction
of the line drawn by passing through the centres of the benzene rings along the x-axis
and denote the length of the effective single bond projected along the x-axis as b, and the
length of the double bond along the x-axis as a. Then the lattice period is d = a + b

with a = R2m,2m+1 cos θ1 and b = R2m−1,2m cos θ2, where θ1 (θ2) is angle between the
vinylene double bond R2m,2m+1 (=1.345 Å) (the effective single bond R2m−1,2m) and the x-
axis. R2m−1,2m may be determined from geometric relations for the vinylene double bond, the
effective single bond, and the angle between them.

3. Determination of the effective hopping parameter

3.1. The Green’s function and energy spectra

The effective single-band Hamiltonian of the PPV has been constructed above. The next
important step is to determine the values of the effective hopping parameter tre and the effective
site energy ε̄. For this, we introduce the Green’s function for the renormalized PPV system [17]:

Gij (t − t ′) = −i〈 |T [Ciσ (t)C
†
jσ (t

′)]| 〉 (21)

where | 〉 denotes the ground state of the renormalized PPV system.

C
†
jσ (t) = exp(iH̃0t)C

†
iσ exp(−iH̃0t)

is the Heisenberg operator. In the energy domain, Gij (t − t ′) is transformed into Gij (E) which
satisfies the following coupled set of linear equations:

EGij (E) = δij + ε̄iGij (E) +
∑
l

tilGlj (E). (22)

When the system is in the ground state, the diagonal Green’s function contains all of the
information of the energy spectrum. The energies of the system can then be obtained from the
poles of the diagonal matrix element Gll(E). Because all of the effective site energies are the
same, the Green functions for even sites and odd sites are identical. From (22), we obtain

Gll(E) = 1

E − ε̄ − t2
v

E − ε̄ − t2
re

· · ·

− t2
re

E − ε̄ − t2
v

· · ·

. (23)

HereE is the energy spectrum of the renormalized PPV. Equation (23) is the continued-fraction
form of the Green’s function. If we apply a different cut-off to the continued-fraction part, we
may have different systems with distinct energy distributions. Note that when ε̄ and tre are
inserted into (23), the E-values obtained are those of the original PPV system.
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(1) For a two-effective-site system without a term for hopping between these two effective
sites, Gll(E) is

G2(E) = 1

E − ε̄
. (24)

It can be seen from the expression for ε̄ (see (11)) that the corresponding original system
is just a phenylene unit. From the poles of (24) we obtain a polynomial equation in E,
whose solution yields the energies of the original system: E = 0 or

E4 = +

√√√√ (5t2
b + t2

s )

2
+

√
2t4

b +
(t2

b − t2
s )

2

4

E3 = +

√√√√ (5t2
b + t2

s )

2
−

√
2t4

b +
(t2

b − t2
s )

2

4

E2 = −

√√√√ (5t2
b + t2

s )

2
−

√
2t4

b +
(t2

b − t2
s )

2

4

E1 = −

√√√√ (5t2
b + t2

s )

2
+

√
2t4

b +
(t2

b − t2
s )

2

4
.

(25)

If ts is taken as zero, equation (25) shows that E4 = 2tb, E3 = tb, E2 = −tb, and
E1 = −2tb, which are just the energies of a single benzene ring. Here the site energies
have been omitted. If they were retained, however, we would clearly have E4 = a + 2tb,
E3 = a + tb, E2 = a − tb, and E1 = a − 2tb. Evidently, these four energies correspond to
four states of a single benzene ring: a2u(E4), e1g(E3), e2u(E2), and b2g(E1). The LUMO
and the HOMO are the e1g and e2u ones, respectively. The LUMO and the HOMO give the
energy difference, 2tb, whether the site energies, a, are omitted or not. Thus, equation (25)
gives the four real energies of a phenylene unit (eight carbon atoms) with four degenerate
levels, and the difference between the LUMO and the HOMO is E3 − E2.

(2) For a three-effective-site system with hopping parameters tre and tv for the adjacent sites,
Gll(E) reads

G3(E) = 1

E − ε̄ − t2
v

E − ε̄
− t2

re

E − ε̄

. (26)

The corresponding original system is composed of a phenylene unit and a vinylene unit,
which includes a PPV unit. Inserting (12) and (11) into (26), we again obtain a poly-
nomial equation in E. The solution to this algebraic equation gives ten real energy values
E. There are nine π -electrons in this system Thus, on the HOMO level there is only one
electron site occupied.

(3) For a seven-effective-site system with alternative hopping parameters tre and tv , Gll(E)

becomes

G7(E) = 1

E − ε̄ − t2
v

E − ε̄ − t2
re

E − ε̄ − t2
v

E − ε̄

− t2
re

E − ε̄ − t2
v

E − ε̄ − t2
re

E − ε̄

. (27)
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The corresponding original system is composed of three phenylene units and three vinylene
units, which includes three PPV units. Similarly, inserting (12) and (11) into (27), we can
obtain a polynomial equation in E. The solution to this algebraic equation gives twenty
real energy values E. Evidently, there are three degenerate levels in the empty molecular
orbitals and the occupied molecular orbitals, respectively. On the HOMO level there is
one π -electron site occupied. Note that the present method cannot be used to establish
which level is degenerate.

3.2. Calculation results

In our calculations we adopt the following two sets of parameters—referred to as set (I) [8, 18]
and set (II) [7]:

(I) tv = 2.32 eV, ts = 1.74 eV, tb = 2.11 eV, and U = 5.05 eV. The electron–electron
interactions are given by the Ohno formula:

Vm,n = 1/
√

[(1/U)2 + (Rm,n/V r0)2]

where V = 2.63 eV, Rm,n is the distance between carbon atom sites m and n, and
r0 = 1.4 Å, the mean value of Rm,n. The electron–lattice coupling strength is assumed
to be 5.23 eV Å−1, which gives Vb, Vs , and V0 as 2.34 eV, 2.26 eV, and 2.40 eV, resp-
ectively. The six bond lengths of the benzene ring are taken to be equal to 1.39 Å; the
bond length between the benzene ring and the vinylene double bond is 1.45 Å, and the
vinylene double-bond length is 1.35 Å.

(II) tv = 2.6 eV, ts = 2.2 eV, tb = 2.4 eV, U = 8 eV, and

Vm,n = U/κ

√
(1 + 0.6117R2

m,n)

which gives Vb, Vs , and V0 as 5.42/κ eV, 5.29/κ eV, and 5.51/κ eV, respectively, where
the Rm,n are taken as those in (I). Here κ is taken as 2, 2.4, and 3, respectively.

The more levels of the continued fraction we take, the longer the renormalized system is
taken to be. Because it is not practical to simultaneously resolve equations (12), (11), and (23)
with an infinite continued fraction, and, moreover, when PPV has more than eight unit cells
the band energy gap has reached a fixed value [3], only finite levels of the continued fraction
are considered in actual calculations. Table 1 lists the calculation results for one PPV unit
cell, three PPV unit cells, and ten PPV unit cells. Table 1 shows that the values of tre decrease
with increasing numbers of PPV unit cells and that increasing the number of PPV unit cells
decreases the intervals between the LUMO and HOMO levels.

Table 1. The computational results in the first two rows are based on the parameters tv = 2.32 eV,
ts = 1.74 eV, and tb = 2.11 eV from (I); those in the last two rows are based on the parameters
tv = 2.6 eV, ts = 2.2 eV, and tb = 2.4 eV from (II).

Single PPV unit Three PPV units Ten PPV units

E ε̄ tre E ε̄ tre E ε̄ tre

1.32 (LUMO) −1.07 1.31 1.05 (LUMO) −0.70 1.02 0.90 (LUMO) −0.56 0.92
−1.32 (HOMO) 1.07 1.31 −1.05 (HOMO) 0.70 1.02 −0.90 (HOMO) 0.56 0.92

1.35 (LUMO) −1.21 1.60 1.01 (LUMO) −0.76 1.28 0.87 (LUMO) −0.62 1.20
−1.35 (HOMO) 1.21 1.60 −1.01 (HOMO) 0.76 1.28 −0.87 (HOMO) 0.62 1.20
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On putting the energy value of the HOMO or the LUMO into (12) and (15), we obtain
the corresponding effective hopping parameter values, tre, and the electron–electron inter-
action corrections, 
treee . According to these values, we obtain the corresponding band energy
gap, EHF

gap .
Table 1 lists the energy values of the LUMO and HOMO and the corresponding effective

hopping parameters, tre and ε̄. It is seen that for the different initial parameters: tv , ts , and tb,
the values of tre and ε̄ obtained are somewhat different but their differences are never very large.

Table 2 lists the values of the band energy gap determined for the renormalized PPV
polymer corresponding to the different values of tre using two sets of different parameters, sets
(I) and (II). Note that the values in table 2 are in fact obtained without considering the angle
(∼120◦) between the phenylene unit and vinylene unit in the PPV unit. Thus, the resultant
band energy gap may be a little larger.

Table 3 lists the values obtained considering this angle in the calculations. These values
are smaller than those in table 2.

Table 2. E0
gap = 2(tv − tre), 
Egap = 2(
t0

ee −
treee ), and EHF
gap = E0

gap +
Egap . All quantities
are in units of eV.

Ten PPV units tv tre E0
gap 
Egap EHF

gap

(I) U = 5.05 2.32 0.92 2.79 0.85 3.65

(II) U = 6, κ = 1.2 2.6 1.20 2.80 0.51 3.32

(II) U = 6, κ = 1.6 2.6 1.20 2.80 0.99 3.79

(II) U = 6, κ = 2 2.6 1.20 2.80 0.88 3.68

(II) U = 6, κ = 2.1 2.6 1.20 2.80 0.80 3.60

(II) U = 6, κ = 2.2 2.6 1.20 2.80 0.69 3.49

(II) U = 8, κ = 1.6 2.6 1.20 2.80 0.51 3.32

(II) U = 8, κ = 1.8 2.6 1.20 2.80 0.83 3.63

(II) U = 8, κ = 2 2.6 1.20 2.80 0.96 3.76

(II) U = 8, κ = 2.4 2.6 1.20 2.80 0.97 3.77

(II) U = 8, κ = 3 2.6 1.20 2.80 0.62 3.42

Table 3. E′ 0
gap , 
E′

gap , and E′HF
gap obtained taking into consideration the angle of 120◦ between

the phenylene unit and the vinylene unit. All quantities are in units of eV.

Ten PPV units E′ 0
gap 
E′

gap E′HF
gap Egap

(I) U = 5.05 2.61 0.79 3.42 3.2 (HF) [8]

(II) U = 6, κ = 1.6 2.63 0.93 3.55 3.3 (GW ) [5]

(II) U = 6, κ = 2 2.63 0.88 3.45 3.6 (HF) [7]

(II) U = 6, κ = 2.1 2.63 0.75 3.38 3.64 (HF) [18]

(II) U = 8, κ = 1.8 2.63 0.78 3.40

(II) U = 8, κ = 2 2.63 0.90 3.52

(II) U = 8, κ = 2.4 2.63 0.91 3.54

Note that the results in table 2 were obtained without considering the geometric
configuration of PPV; that is, we treat the effective single bond and the double bond as purely
one dimensional. Therefore, the calculated E0

gap = 2(tv − tre) and the resultant EHF
gap may

be larger than the actual values. In fact, the phenylene unit and the vinylene unit are at an
angle, which makes the effective PPV system a zigzag one (quasi-one dimensional). Thus,
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the band energy gap (2|zkF |) along the x-axis direction should be multiplied by a factor. The
factor is determined by the geometric parameters of the PPV unit. If the angle between the
effective single bond and the double bond is assumed to be 120◦, we then obtain smaller values
of E′ 0

gap, 
E′
gap, and E′HF

gap . It is seen that the values of E′HF
gap are within a reasonable range.

See table 3.

4. Discussion

When some E-values are equal to tb or any multiple of tb, tre and ε̄ from (11) and (12)
will become divergent. When the site energies, a, are included, the divergence will be at
tb + a and 2tb + a. These E-values cannot be inserted in (11) and (12) to determine tre or ε̄. In
renormalization language, the values of E equalling tb or multiples of tb make the renormalized
electron system deviate from its fixed point, and so we avoid them.

In the renormalization calculations, there are two standard points which can be used which
are inherent to PPV polymer. They are the intervals, δ (=ELUMO − EHOMO), between the
LUMO and HOMO levels for a single PPV unit and an infinite PPV chain, respectively, for
the given parameters. The interval, δ, decreases with increasing number of repeated PPV
units and reaches a fixed value when the numbers are rather large. For PPV, the intervals,
δ, for the ten-unit systems and those for the systems with more than ten units are almost the
same. For instance, 
δ = δ(ten PPV units) − δ(eleven PPV units) = 0.009 (for the data
set (I)) or 0.011 (for the data set (II)). Thus, the ten-PPV-unit system is sufficient to represent
an infinite PPV chain. On the other hand, the main absorption peaks of the experimental
absorption spectra of PPV and MEH-PPV (a derivative of PPV) are measured at 2.5 eV [19]
and 2.4 eV [3]. These result from the transition of an electron in the HOMO level to the
LUMO level under the excitation of a photon by the applied electric field. Thus, choosing
these energies, ELUMO or EHOMO , to determine the effective hopping of the renormalized
single-band PPV system (corresponding to a very long PPV system) is natural and reasonable.
Furthermore, the desired effective hopping value tre of the renormalized system should satisfy
the following requirements: (i) it should be smaller than ts and tb; and (ii) the effective
hopping tre must reproduce the main absorption peak at the photon energy 2.4 eV or 2.5 eV.
Using the renormalized single-band model Hamiltonian, we did indeed reproduce the main
absorption peak4.

The results in table 1 show that the effective hopping values, tre, obtained for ten PPV
units from the data sets (I) and (II) are different (0.92 eV and 1.20 eV). But the differences
between tre and tv for the sets (I) and (II) are almost the same. This yields almost identical
non-interacting band energy gaps, E0

gap, of 2.8 eV (table 2) or 2.63 eV (table 3). There is also
a similar case for the effective site energies. The different resultant band energy gaps, EHF

gap ,
result from the electron–electron interaction parameters and the chosen screening strength.

Using the data set (I) where U = 5.05 eV, we obtain the band energy gap of 3.65 eV
(table 2) or 3.42 eV (table 3). As a comparison, the author of [18] gave EHF

gap = 3.64 eV
using the data set (I), while the authors of [8] found that EHF

gap = 3.2 eV using the same
data set (I). Using the data set (II), we found that when U = 6 eV and 1.2 � κ � 2.2,
the band energy gap is within the range between 3.32 eV and 3.79 eV (table 2). When κ is
between 1.6 and 2.1, the band energy gap is between 3.79 eV and 3.60 eV (table 2) or 3.55 eV
and 3.38 eV (table 3). When κ is 1.2 or 2.2, the band energy gap is 3.32 eV or 3.49 eV,
respectively. Except for κ = 1.2 and 2.2, EHF

gap decreases with κ increasing from 1.6 to 2.1

4 We have used this model to calculate the 11Bu exciton state and found that its main absorption peak lies near
2.4–2.5 eV.
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(tables 2 and 3). When U = 5.05 or 6 eV the system is not in the strong-electron-correlation
region. Thus, our HF effective Hamiltonian HHF

e−e not containing the on-site Coulomb U may
work reliably.

We notice that the electron–electron interaction Hamiltonian forms in [3, 7, 8, 18] are a
little different from ours. These differences are mainly reflected in the U -term. Because in our
U -term we have extracted 1/2 from the ground-state charge density, the HF decoupling leads
to the vanishing of this term, while the authors of [3, 7, 8, 18] did not extract 1/2 from the
ground-state charge density, so the HF decoupling did not lead to the vanishing of this U -term.
Thus in their Hamiltonians the on-site Coulomb U was kept. That is why our results for the
band energy gap are a little different from theirs, for the same data sets (I) and (II). Although
the U -interaction was kept in their Hamiltonians, their calculations were still within the HF
mean-field theory (the Coulomb-correlation model for the exciton [4]) and did not include the
whole electron correlation effect. In the single-configuration interaction (SCI), the electron
correlation effect does not emerge [17].

When U = 8 eV, the system seems to go into a strong-correlation region. The electron
correlation comes into effect. But our effective Hamiltonian is based on HF approximation,
without keeping the U -term (the reason for this is explained in the previous paragraph). So
U = 8 eV seems not to be a suitable value to use. However, for the organic molecular systems,
the electron–electron interaction is parametrized as an Ohno form [11] which connects the
on-site Coulomb U and the long-range Coulomb interaction Vij . For the organic molecular
systems the difference between the on-site Coulomb U and the nearest-neighbour Coulomb
interaction V may not be so big (usually U ∼ 2V –3V or so [13]), For instance, as we already
know, the calculations [20] for an isolated benzene ring yield that U = 16.93 eV and the
nearest-neighbour long-range Coulomb interaction V is 9.03 eV which is not small compared
with the U -value. Note that there is no magnetic benzene molecule observed at such a U -
value (at a pπ -orbital). Another characteristic of organic molecular systems is the screening
effect which will reduce U and V [16]. These are reflections of the individuality of the
organic molecular systems. Therefore, in the calculations [3, 7], the screening constant κ was
considered. It is seen from our calculational results in tables 2 and 3 that when U = 8 eV we
still obtain reasonable values of EHF

gap which only show small differences when compared with
those from calculations using a HF Hamiltonian keeping the U -term [3, 7, 8, 18]. Thus for
our effective Hamiltonian not keeping the U -term in the HF approximation, the larger U -value
(8 eV) is still appropriate for use in the calculations.

When U = 8 eV, we find that the band energy gap is between 3.32 eV and 3.77 eV for κ
from 1.6 to 3, while it is between 3.63 eV and 3.77 eV for κ from 1.8 to 2.4. Except for κ = 3
and 1.6, EHF

gap increases with κ increasing from 1.8 to 2.4 (table 3). The κ = 2 case gives
EHF

gap = 3.76 eV (table 2) or 3.52 eV (table 3) which is a little different from the result in [3, 7]
which was EHF

gap = 3.6 eV. This difference could be, as stated in the previous paragraph, due
to the different U -terms and the differences between the approaches used here and in [3, 7].

We see from (15) that some Vb-values may make (E − Vb
b) very small for the given
EHOMO or ELUMO , in which case 
treee would become much larger. In such a case, this
may produce a smaller EHF

gap : it may even be close to zero or negative. Thus, Vb cannot be
determined if it is close or equal to EHOMO/
b or ELUMO/
b. If it is, this would make

treee very large (even exceeding 
t0

ee) or divergent. This causes breakdown of the present
renormalization approach. This means a limitation of the present renormalization scheme to
certain interaction parameters. Because Vb is determined by the U -value and κ through (6),
some values of U and κ are prohibited in the present approach. For instance, 
Egap = −0.53
for U = 6 eV and κ = 1, so EHF

gap = 2.27 eV, and 
Egap = −0.16 for U = 8 eV and κ = 1.4,
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so EHF
gap = 2.64 eV, and 
Egap = −1.65 for U = 8 eV and κ = 1.2, so EHF

gap = 1.16 eV,
which is not true for PPV polymer. Thus, the present renormalization scheme is not suitable
for those parameters. Nevertheless, for the data sets (I) and (II), the present method still
works well.

The complete band energy gap should read Egap = EHF
gap + Ec

gap, where Ec
gap is a

contribution from the interparticle corrections. According to the ab initio calculation for
PPV in [5], the band energy gap was 3.3 eV, which included the exchange–correction effects.
Because we are not aware of the actual parameters used in [5], we cannot judge the contribution
Ec

gap from the differences between 3.3 eV and our results in table 2 and table 3.
In the ground state of the system, the band energy gap may be determined from the

difference between the conduction band edge (LUMO) and the valence band top (HOMO).
We may use Egap = Egap + Ec

gap in discussing the band energy gap. In the excited state of the
system where an electron has been excited from the valence band to the conduction band, in
addition to those features that it was necessary to consider in the former case, the polarization
effects and the lattice relaxation accompanying the moving electron and the moving hole
remaining in the valence band need to be considered. In this case we may have an extra term
and have Egap = Egap +Ec

gap +E
pol
gap, where E

pol
gap is the contribution from the polarization and

the lattice relaxation. When we study the polaron–exciton problem, we should consider those
factors in determining the band energy gap.

5. Conclusions

Our calculated results show that the values of the band energy gap obtained for ten PPV units
are close to those in references [3, 5, 7, 8, 18]. The small differences between ours and those in
[3, 5, 7, 8, 18] as regards EHF

gap may result from the different U -terms used and the differences
between the individual techniques. In the present model approach, the many-band nature of
PPV has been converted into a single-band one (we only use the HOMO and LUMO states of
the original PPV system) with an effective hopping parameter tre (0.92 eV from the data set (I)
or 1.20 eV from the data set (II)) and the effective site energy ε̄ (−0.56 eV from the data set (I)
or −0.62 eV from the data set (II)). The electron–electron interaction effect is treated by HF
approximation and renormalized as H̃HF

re . The parameters before and after the renormalization
have a clear physical connection.

The present model calculation provides a simple but practical approach to investigation
of the electronic structure of PPV. The advantage is that we can consider the main optical
non-linear excitations of a very long conjugated polymer with regularly embedded benzene
rings using a SSH-type single-band Hamiltonian. Another advantage is that it could be used
to consider the atomic substitution problem related to the electron structure of the conjugated
polymers. For the existing data for PPV [3, 7, 8, 18], the present renormalization scheme
works well. Further modification is needed to include the correlation effect arising from the
residual interaction Hres .
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Appendix

The bond charge densities 
s and 
0 are given by the following elliptic integrals:


s = 1

π

∫ π/2

0

2x0 cos2(x) − z0√
1 − (1 − z2

0) sin2(x)

dx (A.1)


0 = 1

π

∫ π/2

0

2x0 cos2(x) + z0√
1 − (1 − z2

0) sin2(x)

dx (A.2)

where

x0 = ts

tv + ts
= t0 − δt

2t0

z0 = tv − ts

tv + ts
= δt

t0
.

(A.3)

Here t0 is the bond length of the vinylene unit without ‘dimerization’ and δt is the ‘dimerization’
on the vinylene unit. Assume that the bond lengths within the benzene rings are all equal; the
bond charge density 
b may then be approximated as


b � 1

π

∫ π/2

0
cos(x) dx = 1

π
. (A.4)

The value of 
b should be larger than 
s , since the bond length on the benzene ring is shorter
than that between the benzene ring and the vinylene unit [8, 21].
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